Package: depmix 0.9.16

depmix: Dependent Mixture Models

Fits (multigroup) mixtures of latent or hidden Markov models on mixed categorical and continuous (timeseries) data. The 'Rdonlp2' package can optionally be used for optimization of the log-likelihood and is available from R-forge. See Visser et al. (2009, <doi:10.1007/978-0-387-95922-1_13>) for examples and applications.

Authors:Ingmar Visser <[email protected]>

depmix_0.9.16.tar.gz
depmix_0.9.16.zip(r-4.5)depmix_0.9.16.zip(r-4.4)depmix_0.9.16.zip(r-4.3)
depmix_0.9.16.tgz(r-4.4-x86_64)depmix_0.9.16.tgz(r-4.4-arm64)depmix_0.9.16.tgz(r-4.3-x86_64)depmix_0.9.16.tgz(r-4.3-arm64)
depmix_0.9.16.tar.gz(r-4.5-noble)depmix_0.9.16.tar.gz(r-4.4-noble)
depmix_0.9.16.tgz(r-4.4-emscripten)depmix_0.9.16.tgz(r-4.3-emscripten)
depmix.pdf |depmix.html
depmix/json (API)

# Install 'depmix' in R:
install.packages('depmix', repos = c('https://ingmarvisser.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 7 scripts 346 downloads 19 exports 1 dependencies

Last updated 5 years agofrom:889cf239d1. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-win-x86_64NOTEOct 24 2024
R-4.5-linux-x86_64NOTEOct 24 2024
R-4.4-win-x86_64NOTENov 23 2024
R-4.4-mac-x86_64NOTENov 23 2024
R-4.4-mac-aarch64NOTENov 23 2024
R-4.3-win-x86_64NOTENov 23 2024
R-4.3-mac-x86_64NOTENov 23 2024
R-4.3-mac-aarch64NOTENov 23 2024

Exports:bootstrapdmmdnamefitdmmgenerateinamesinditemtypeslcaloglikemarkovdatamgdmmmixdmmncovnitemsntimesonelinerposteriorreplicates

Dependencies:MASS

Readme and manuals

Help Manual

Help pageTopics
Depmix utility functionsbdiag checkSetRecode cl2st cl2stob fblo fbuo fresp kmstart np pa2conr paridx poststart pp ppar recitt recode tr2stin
Discrimination Learning Datadiscrimination
Dependent Mixture Model Specifictiondmm lca lcm summary.dmm
Fitting Dependent Mixture Modelsbootstrap computeSes depmix fitdmm loglike oneliner posterior summary.fit
Generate data from a dependent mixture modelgenerate
Specifying Markov data objectsdname inames ind itemtypes markovdata ncov nitems ntimes plot.md plot.ts2 print.md replicates summary.md
Multi group model specificationmgdmm summary.mgd
Mixture of dmm's specificationmixdmm summary.mixdmm
Speed Accuracy Switching Dataspeed